How do you prove (1 - tanx) / (1 + tanx) = (1 - sin2x) / (cos2x)?

1 Answer
Apr 27, 2015

Multiply the left side in the numerator and denominator by 1-tanx and simplify to get the answer:

(1-tanx)^2 / (1-tan^2 x)

=(1+tan^2x -2tanx)/(1- (sin^2x/cos^2x)

= (sec^2x -2tanx)/((cos^2x -sin^2x)/cos^2x) (because 1+tan^2x = sec^2x)

=(1-2tan x cos^2x)/cos(2x) (because cos^2x- sin^2x=cos 2x)

=(1-sin2x)/cos(2x)