How do you prove (1-tanx)/(1+tanx) = (1-sin2x)/(cos2x)1tanx1+tanx=1sin2xcos2x?

1 Answer
May 19, 2015

Use the following facts:
tanx=sinx/cosxtanx=sinxcosx
sin2x=2sinxcosxsin2x=2sinxcosx
cos2x=cos^2x-sin^2xcos2x=cos2xsin2x
sin^2x+cos^2x=1sin2x+cos2x=1

So you get:

(1-sinx/cosx)/(1+sinx/cosx)=(1-2sinxcosx)/(cos^2x-sin^2x)1sinxcosx1+sinxcosx=12sinxcosxcos2xsin2x
(cosx-sinx)/cancel(cosx)*cancel((cosx))/cancel((cosx+sinx))=(1-2sinxcosx)/((cosx-sinx)cancel((cosx+sinx)))

Taking: (cosx-sinx) to the left side and using the fact that: sin^2x+cos^2x=1

(cosx-sinx)^2=sin^2x+cos^2x-2sinxcosx which are indeed equals.