How do you prove (1+tanx) /( 1-tanx) = (1+sin2x) / cos"2x"1+tanx1tanx=1+sin2xcos2x?

1 Answer
May 27, 2016

as follows

Explanation:

RHS= (1+sin2x) / cos"2x"RHS=1+sin2xcos2x

Inserting ,1=(cos^2x+sin^2x) and cos2x=(cos^2x-sin^2x)1=(cos2x+sin2x)andcos2x=(cos2xsin2x)

RHS = (cos^2x+sin^2x+2sinxcosx) / (cos^2x-sin^2x)RHS=cos2x+sin2x+2sinxcosxcos2xsin2x

= (cosx+sinx)^2 /( (cosx-sinx)xx (cosx+sinx))=(cosx+sinx)2(cosxsinx)×(cosx+sinx)

= (cosx+sinx)^cancel2 /( (cosx-sinx)xx cancel(cosx+sinx))

= (cosx+sinx) / (cosx-sinx)

Dividing both numerator and denominator by cosx

= (cosx/cosx+sinx/cosx) / (cosx/cosx-sinx/cosx)

= (1+tanx) / (1-tanx)=LHS
proved