How do you prove #(1+tany)/(1+coty)=secy/cscy#?

1 Answer
Aug 25, 2016

See below.

Explanation:

Apply the following identities:

#tantheta = sintheta/costheta#

#cottheta = 1/tantheta = 1/(sintheta/costheta) = costheta/sintheta#

#sectheta = 1/costheta#

#csctheta= 1/sintheta#

Start the simplification process on both sides.

#(1 + siny/cosy)/(1 + cosy/siny) = (1/cosy)/(1/siny)#

Put on a common denominator:

#((cosy + siny)/cosy)/((siny + cosy)/siny) = 1/cosy xx siny/1#

#(cosy + siny)/cosy xx siny/(siny + cosy) = siny/cosy#

#(cancel(cosy + siny))/cosy xx siny/(cancel(siny + cosy)) = siny/cosy#

#siny/cosy = siny/cosy#

Identity proved!!

Hopefully this helps!