How do you prove cos^2β-sin^2β=2cos^2β-1?

2 Answers

See proof below

Explanation:

Consider LHS as follows

LHS=\cos^2\beta-\sin^2\beta

=\cos^2\beta-(1-\cos^2\beta)

=\cos^2\beta-1+\cos^2\beta

=2\cos^2\beta-1

=RHS

Proved.

Jul 27, 2018

"see explanation"

Explanation:

"using the "color(blue)"trigonometric identity"

•color(white)(x)sin^2beta+cos^2beta=1

"consider the left side"

cos^2beta-(1-cos^2beta)

=cos^2beta-1+cos^2beta

=2cos^2beta-1=" right side "rArr"verified"