How do you prove #(cos^4x - sin^4x)/sin^2x=cot^2x-1#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Nghi N. Dec 5, 2015 Prove trig equation. Explanation: #cos^4 x - sin^2 x = (cos ^2 x - sin^2 x( (cos^2 x + sin^2 x) = # #= (cos@ x - sin^2 x).# because (cos^2 x + sin^2 x) = 1 #(cos^2 x - sin^2 x)/(sin^2 x) = cos^2 x/(sin^2 x) - sin^2 x/(sin^2 x) = # #= cot^2 x - 1# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 7763 views around the world You can reuse this answer Creative Commons License