How do you prove #cos(pi/2 + theta) = -sin(theta)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Arunraju Naspuri Feb 29, 2016 #cos(pi/2+theta)=-sintheta# is proved by the formula #cos (a+b)=cosacosb-sinasinb#. Explanation: #cos (a+b)=cosacosb-sinasinb# let #a=pi/2 & b= theta# #=>cos(pi/2+theta)=cos(pi/2)cos(theta)-sin(pi/2)sin(theta)# #=>cos(pi/2+theta)=(0)costheta-(1)sintheta# #=>cos(pi/2+theta)=0-sintheta# #=>cos(pi/2+theta)=-sintheta# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 56638 views around the world You can reuse this answer Creative Commons License