How do you prove cos(pi/2 + theta) = -sin(theta)? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Arunraju Naspuri Feb 29, 2016 cos(pi/2+theta)=-sintheta is proved by the formula cos (a+b)=cosacosb-sinasinb. Explanation: cos (a+b)=cosacosb-sinasinb let a=pi/2 & b= theta =>cos(pi/2+theta)=cos(pi/2)cos(theta)-sin(pi/2)sin(theta) =>cos(pi/2+theta)=(0)costheta-(1)sintheta =>cos(pi/2+theta)=0-sintheta =>cos(pi/2+theta)=-sintheta Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 58602 views around the world You can reuse this answer Creative Commons License