How do you prove cos[θ]+cot[θ]csc[θ]+1=cos[θ]? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer sente May 2, 2016 Using the definitions of cot(θ) and csc(θ), for sin(θ)≠0 and sin(θ)≠−1, we have cos(θ)+cot(θ)csc(θ)+1=cos(θ)+cos(θ)sin(θ)1sin(θ)+1 =cos(θ)1+1sin(θ)1+1sin(θ) =cos(θ)⋅1 =cos(θ) Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 3955 views around the world You can reuse this answer Creative Commons License