How do you prove #cos(x)tan(X) + sin(x)cot(x) = sin(x) + cos^2(x)#?

1 Answer
Jul 25, 2018

Please see below.

Explanation:

We know that,

#diamondtan theta=sintheta/cos theta and cottheta=costheta/sintheta#

Given that

#cosxtancolor(red)(x)+sinxcotx=sinx+color(red)(cos^2x#

We take ,

#LHS=cosxtanx+sinxcotx#

#color(white)(LHS)=cosx(sinx/cosx)+sinx(cosx/sinx)#

#color(white)(LHS)=sinx+cosx!=sinx+cos^2x#

So, #LHS!=RHS#

Hence, we cannot prove the above result.
Please check your question.