How do you prove cos(x)tan(X) + sin(x)cot(x) = sin(x) + cos^2(x)?

1 Answer
Jul 25, 2018

Please see below.

Explanation:

We know that,

diamondtan theta=sintheta/cos theta and cottheta=costheta/sintheta

Given that

cosxtancolor(red)(x)+sinxcotx=sinx+color(red)(cos^2x

We take ,

LHS=cosxtanx+sinxcotx

color(white)(LHS)=cosx(sinx/cosx)+sinx(cosx/sinx)

color(white)(LHS)=sinx+cosx!=sinx+cos^2x

So, LHS!=RHS

Hence, we cannot prove the above result.
Please check your question.