How do you prove cos(x-y)/cos(x+y)=(cot x +tan y)/( cot x- tan y)?
2 Answers
See below...
Explanation:
cos(x-y)/cos(x+y)
=(cosx cdot cosy + sinx cdot siny)/(cosx cdot cosy -sinx cdot siny)
=((cosx cdot cosy + sinx cdot siny)/(sinx cdot cosy))/((cosx cdot cosy - sinx cdot siny)/(sinx cdot cosy))
=((cosx cdot cosy)/(sinx cdot cosy) + (sinx cdot siny)/(sinx cdot cosy))/((cosx cdot cosy)/(sinx cdot cosy) - (sinx cdot siny)/(sinx cdot cosy))
=((cosx cdot cancel(cosy))/(sinx cdot cancel(cosy)) + (cancel(sinx) cdot siny)/(cancel(sinx) cdot cosy))/((cosx cdot cancel(cosy))/(sinx cdot cancel(cosy)) - (cancel(sinx) cdot siny)/(cancel(sinx) cdot cosy))
=(cot x +tan y)/( cot x- tan y) FORMULA reference:- wiki
hope it helps...
Thank you...
We seek to prove that:
cos(x-y)/cos(x+y) -= (cotx+tany)/(cotx-tany)
We can the trigonometric identities:
cos(A+B) -= cosAcosB - sinAsinB
cos(A-B) -= cosAcosB + sinAsinB
Consider the LHS:
LHS = cos(x-y)/cos(x+y)
\ \ \ \ \ \ \ \ = (cosxcosy + sinxsiny)/(cosxcosy - sinxsiny)
Now if we multiply both numerator and denominator by
LHS = (cosxcosy + sinxsiny)/(cosxcosy - sinxsiny) * (1/(sinxcosy)) / (1/(sinxcosy))
\ \ \ \ \ \ \ \ = ( (cosxcosy)/(sinxcosy) + (sinxsiny)/(sinxcosy))/((cosxcosy)/(sinxcosy) - (sinxsiny)/(sinxcosy) )
\ \ \ \ \ \ \ \ = ( (cosx)/(sinx) + (siny)/(cosy))/((cosx)/(sinx) - (siny)/(cosy) )
\ \ \ \ \ \ \ \ = ( cotx + tany )/ ( cotx - tany ) \ \ \ QED