How do you prove cos(x+y)cosy + sin(x+y)siny = cosxcos(x+y)cosy+sin(x+y)siny=cosx?

1 Answer
Apr 28, 2016

Please see below

Explanation:

Recall the trigonometrical identity

cos(A-B)=cosAcosB+sinAsinBcos(AB)=cosAcosB+sinAsinB

Putting A=x+yA=x+y and B=yB=y, we get

cos(x+y-y)=cos(x+y)cosy+sin(x+y)sinycos(x+yy)=cos(x+y)cosy+sin(x+y)siny

or transposing LHS to RHS and vice-versa

cos(x+y)cosy+sin(x+y)siny=cosxcos(x+y)cosy+sin(x+y)siny=cosx