How do you prove (cos2A)/sinA + (sin2A)/cosA = csc A?

2 Answers
Jul 12, 2018

Please refer to a Proof in the Explanation.

Explanation:

(cos2A)/sinA+(sin2A)/cosA,

=(cos2AcosA+sin2AsinA)/(sinAcosA),

=(cos(2A-A))/(sinAcosA),

=cosA/(sinAcosA),

=1/sinA,

=cscA, as desired!

Jul 12, 2018

Please refer to a Second Proof in Explanation.

Explanation:

"Using "cos2A=1-2sin^2A, and, sin2A=2sinAcosA,

"The L.H.S."=(1-2sin^2A)/sinA+(2sinAcosA)/cosA,

=1/sinA-(2sin^2A)/sinA+2sinA,

=cscA-2sinA+2sinA,

=cscA,

="The R.H.S."