How do you prove (CosA + CosB)^2 + (SinA + SinB)^2 = 2[1 + cos(A - B)](cosA+cosB)2+(sinA+sinB)2=2[1+cos(AB)]?

1 Answer
Jun 6, 2015

cos^A + cos^2 B + 2cos A.cos B + sin^2A + sin^2 B + 2sin A.sin B =cosA+cos2B+2cosA.cosB+sin2A+sin2B+2sinA.sinB=

= 2 + (2cos A.cos B - 2sin A.sin B) = 2[1 + cos (A - B)]=2+(2cosA.cosB2sinA.sinB)=2[1+cos(AB)]