How do you prove: ("cosec"(x - B))/ sec(x + B) = (1 - tan x tan B) / (tan x - tan B) ?
1 Answer
We seek to prove the identity:
("cosec"(x - B))/ sec(x + B) = (1 - tan x tan B) / (tan x - tan B)
Consider the LHS:
LHS = ("cosec"(x - B))/ sec(x + B)
Using the fundamental definitions of trigonometric functions:
LHS = (1/sin(x - B))/ (1/cos(x + B))
\ \ \ \ \ \ \ \ = (cos(x + B))/(sin(x - B))
Now we use the sine and cosine sum of multiple angle identities:
cos(A+B) -= cosAcosB - sinAsinB
sin(A+B) -= sinAcosB + cosAsinB
So that:
LHS = (cosxcosB-sinxsinB)/(sinxcosB-cosxsinB)
\ \ \ \ \ \ \ \ = (cosxcosB-sinxsinB)/(sinxcosB-cosxsinB) * (1/(cosxcosB))/(1/(cosxcosB))
\ \ \ \ \ \ \ \ = ((cosxcosB)/(cosxcosB) - (sinxsinB)/(cosxcosB) ) /( (sinxcosB)/(cosxcosB) - (cosxsinB)/(cosxcosB) )
\ \ \ \ \ \ \ \ = (1 - sinx/cosx * sinB/cosB ) /( sinx/cosx- sinB/cosB )
\ \ \ \ \ \ \ \ = (1 - tanx \ tanB ) /( tanx- tanB )
\ \ \ \ \ \ \ \ = RHS \ \ \ QED