How do you prove Cosh(A+B) = CoshA*CoshB+SinhB*SinhA?

1 Answer
May 3, 2016

See below

Explanation:

Use the definition of Hyperbolic Functions for cosh x
cosh x =(e^x + e^-x)/2 and sinh x=(e^x-e^-x)/2

cosh(A+B)=coshAcoshB+sinhAsinhB

Right Side: =[(e^A+e^-A)/2 xx (e^B+e^-B)/2]+[(e^A-e^-A)/2 xx (e^B-e^-B)/2]

=(e^(A+B)+e^(A-B)+e^(B-A)+e^(-(A+B)))/4 + (e^(A+B)-e^(A-B)-e^(B-A)+e^(-(A+B)))/4

=(e^(A+B)+cancel(e^(A-B))+cancel(e^(B-A))+e^(-(A+B))+ e^(A+B)-cancel(e^(A-B))-cancel(e^(B-A))+e^(-(A+B)))/4

=(2e^(A+B)+2e^(-(A+B)))/4

=(2(e^(A+B)+e^(-(A+B))))/4

=(e^(A+B)+e^(-(A+B)))/2

=cosh(A+B)

=right side