How do you prove (cosx/(1 + sinx)) + (cosx/(1 - sinx)) = 2secx(cosx1+sinx)+(cosx1sinx)=2secx?

1 Answer
Mar 6, 2018

See Below

Explanation:

LHSLHS: cosx /(1+sinx) + cos x/(1-sinx)cosx1+sinx+cosx1sinx

=(cosx(1-sinx)+cosx(1+sinx))/(1-sin^2x)=cosx(1sinx)+cosx(1+sinx)1sin2x-->common denominator

=(cosx-sin x cos x+cosx+sinx cos x)/cos^2x=cosxsinxcosx+cosx+sinxcosxcos2x

=(cosxcancel(-sin x cos x)+cosx+cancel(sinx cos x))/cos^2x

=(2cosx)/cos^2x

=(2cancelcosx)/cos^cancel2x

=2/cosx

=2*1/cosx

=sec x

=RHS