How do you prove #(cosx/(1 + sinx)) + (cosx/(1 - sinx)) = 2secx#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Mar 6, 2018 See Below Explanation: #LHS#: #cosx /(1+sinx) + cos x/(1-sinx)# #=(cosx(1-sinx)+cosx(1+sinx))/(1-sin^2x)#-->common denominator #=(cosx-sin x cos x+cosx+sinx cos x)/cos^2x# #=(cosxcancel(-sin x cos x)+cosx+cancel(sinx cos x))/cos^2x# #=(2cosx)/cos^2x# #=(2cancelcosx)/cos^cancel2x# #=2/cosx# #=2*1/cosx# #=sec x# #=RHS# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 28970 views around the world You can reuse this answer Creative Commons License