How do you prove cot^2 x/ (1+csc x) = (1-sin x)/ sin xcot2x1+cscx=1−sinxsinx? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Kalyanam S. Jul 8, 2018 As proved below. Explanation: cot^2 x = csc^2 x - 1, csc x = 1/ sin xcot2x=csc2x−1,cscx=1sinx cot^2 x / (1 + csc x) = (csc^2 x - 1) / (csc x + 1)cot2x1+cscx=csc2x−1cscx+1 => (cancel(csc x + 1) (csc x - 1)) / cancel(csc x + 1) => csc x - 1 = (1/sin x - 1) color(violet)(= (1-sin x) / sin x Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 22431 views around the world You can reuse this answer Creative Commons License