How do you prove (Cot(x) - tan(x)) /( sin(x) cos(x)) = csc^2(x) - sec^2(x)cot(x)tan(x)sin(x)cos(x)=csc2(x)sec2(x)?

1 Answer
May 5, 2016

see below

Explanation:

Left Side:=(cosx/sinx -sinx/cosx)/(sinxcosx)=cosxsinxsinxcosxsinxcosx

=((cos^2x-sin^2x)/(sinxcosx))/(sinxcosx)=cos2xsin2xsinxcosxsinxcosx

=(cos^2x-sin^2x)/(sinxcosx) xx 1/(sinxcosx)=cos2xsin2xsinxcosx×1sinxcosx

=(cos^2x-sin^2x)/(sin^2xcos^2x)=cos2xsin2xsin2xcos2x

=cos^2x/(sin^2xcos^2x) - sin^2x/(sin^2xcos^2x)=cos2xsin2xcos2xsin2xsin2xcos2x

=1/sin^2x - 1/cos^2x=1sin2x1cos2x

=csc^2x-sec^2x=csc2xsec2x

== Right Side