How do you prove (cotA-1)/(cotA+1) = (cosA-sinA)/(cosA+sinA)?

3 Answers
Apr 7, 2018

Please refer to the Explanation.

Explanation:

(cotA-1)/(cotA+1),

={cosA/sinA-1}-:{cosA/sinA+1},

={(cosA-sinA)/cancelsinA}-:{(cosA+sinA)/cancelsinA},

=(cosA-sinA)/(cosA+sinA), as desired!

Apr 7, 2018

See below.

Explanation:

LHS=(cotA-1)/(cotA+1)

=(cosA/sinA-1)/(cosA/sinA+1)

=(cosA/sinA-1)/(cosA/sinA+1)timessinA/sinA

=(cosA-sinA)/(cosA+sinA)

=RHS

Apr 7, 2018

Refer to explanation.

Explanation:

**Starting from color(red)(LHS) **

(cot A - 1)/(cotA+1)

rArr (cosA/sin A -1)/(cosA/sinA + 1)

Since, cotA= cosA/sin A

rArr ((cosA-sinA)/sinA)/((cosA+sinA)/sinA)

rArr((cosA-sinA)/cancelsinA)/((cosA+sinA)/cancelsinA)

rArr (cosA-sinA)/(cosA+sinA)

We get color(red)(RHS).

color(white)(aaaaaaaaaaaaaaaaaaaaĆ aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasasaaaaaaaasaaaaaaaaaaaaaaaaa)
Hope this helps :)