How do you prove csc^2theta-cot^2theta=cotthetatantheta?

2 Answers
Dec 27, 2016

Use the identities cscbeta = 1/sinbeta, cotbeta = cosbeta/sinbeta and tanbeta = sin beta/cosbeta.

1/sin^2theta - cos^2theta/sin^2theta = costheta/sintheta * sintheta/costheta

(1 - cos^2theta)/sin^2theta = 1

Use the identity sin^2beta + cos^2beta = 1.

sin^2theta/sin^2theta = 1

1 = 1

LHS = RHS

Hopefully this helps!

Dec 27, 2016

csc^2theta-cot^2theta=cotthetatantheta

Use the Pythagorean identity 1+cot^2theta=csc^2theta

1+cot^2theta -cot^2theta=cotthetatantheta

1=cotthetatantheta

tantheta/tantheta=cotthetatantheta

tantheta * 1/tantheta =cotthetatantheta

Use the identity cottheta=1/tantheta

tantheta * cottheta= cotthetatantheta

cotthetatantheta=cotthetatantheta