How do you prove #csc^2theta-cot^2theta=cotthetatantheta#?

2 Answers
Dec 27, 2016

Use the identities #cscbeta = 1/sinbeta#, #cotbeta = cosbeta/sinbeta# and #tanbeta = sin beta/cosbeta#.

#1/sin^2theta - cos^2theta/sin^2theta = costheta/sintheta * sintheta/costheta#

#(1 - cos^2theta)/sin^2theta = 1#

Use the identity #sin^2beta + cos^2beta = 1#.

#sin^2theta/sin^2theta = 1#

#1 = 1#

#LHS = RHS#

Hopefully this helps!

Dec 27, 2016

#csc^2theta-cot^2theta=cotthetatantheta#

Use the Pythagorean identity #1+cot^2theta=csc^2theta#

#1+cot^2theta -cot^2theta=cotthetatantheta#

#1=cotthetatantheta#

#tantheta/tantheta=cotthetatantheta#

#tantheta * 1/tantheta =cotthetatantheta#

Use the identity #cottheta=1/tantheta#

#tantheta * cottheta= cotthetatantheta#

#cotthetatantheta=cotthetatantheta#