How do you prove csc^4[theta]-cot^4[theta]=2csc^2-1?

1 Answer
May 2, 2016

See Below

Explanation:

Left Side: =csc^4 theta - cot^4 theta

=1/sin^4 theta - cos^4 theta /sin^4 theta

=(1-cos^4 theta)/sin^4 theta

=((1+cos^2 theta)(1-cos^2 theta))/sin^4 theta

=((1+cos^2 theta)sin^2 theta)/sin^4 theta

=(1+cos^2 theta)/sin^2 theta

=1/sin^2 theta + cos^2 theta/sin^2 theta

=csc^2 theta +cot^2 theta---> cot^2 theta = csc^2 theta -1

=csc^2 theta+csc^2 theta -1

=2csc^2 theta -1

=Right Side