How do you prove csc^4x-cot^4x=csc^2x+cot^2xcsc4xcot4x=csc2x+cot2x?

2 Answers
May 25, 2015

Left side:

1/sin^4 x - cos^4 x/sin^4 x = (1 - cos^4 x)/(sin^4 x) 1sin4xcos4xsin4x=1cos4xsin4x=

= [(1- cos^2 x)(1 + cos^2 x)]/(sin^4 x) = ((sin^2 x)(1 + cos ^2 x))/(sin^4 x)=(1cos2x)(1+cos2x)sin4x=(sin2x)(1+cos2x)sin4x
= (1 + cos^2x)/sin^2 x = 1/(sin^2 x)+ (cos^2 x)/(sin^2 x) ==1+cos2xsin2x=1sin2x+cos2xsin2x=
= csc^2 x + cot^2 x=csc2x+cot2x

Jan 26, 2017

Using the Identity ; csc^2y-cot^2y=1;csc2ycot2y=1,

The L.H.S. =csc^4x-cot^4x=(csc^2x-cot^2x)(csc^2x+cot^2x)=csc4xcot4x=(csc2xcot2x)(csc2x+cot2x)
=csc^2x+cot^2x==csc2x+cot2x=the R.H.S.