How do you prove csc (-x) / sec ( - x) =- cot xcsc(x)sec(x)=cotx?

1 Answer
Mar 17, 2018

We're trying to prove that csc(-x)/sec(-x)=-cotxcsc(x)sec(x)=cotx.

You'll need to use reciprocal identities:

secx=1/cosxsecx=1cosx

cscx=1/sinxcscx=1sinx

and also angle difference formulae:

sin(x-y)=sinxcosy-cosxsinysin(xy)=sinxcosycosxsiny

cos(x-y)=cosxcosy+sinxsinycos(xy)=cosxcosy+sinxsiny

Here's the actual problem. I'll be manipulating the right side of the equation until it equals the right:

LHS=csc(-x)/sec(-x)LHS=csc(x)sec(x)

color(white)(LHS)=(quad1/sin(-x)quad)/(1/(cos(-x))

color(white)(LHS)=1/sin(-x)*cos(-x)/1

color(white)(LHS)=cos(-x)/sin(-x)

color(white)(LHS)=cos(0-x)/sin(0-x)

color(white)(LHS)=(cos0cosx+sin0sinx)/(sin0cosx-cos0sinx)

color(white)(LHS)=(1*cosx+0*sinx)/(0*cosx-1*sinx)

color(white)(LHS)=(1*cosx+color(red)cancelcolor(black)(0*sinx))/(color(red)cancelcolor(black)(0*cosx)-1*sinx)

color(white)(LHS)=(1*cosx)/(-1*sinx)

color(white)(LHS)=cosx/(-1*sinx)

color(white)(LHS)=-1*cosx/sinx

color(white)(LHS)=-1*cotx

color(white)(LHS)=-cotx

color(white)(LHS)=RHS

That's the proof. Hope this helped!