How do you prove (log_(a)x)(log_(x)a)=1(logax)(logxa)=1?

1 Answer
May 6, 2016

Please see below.

Explanation:

Let log_ax=ulogax=u

hence x=a^ux=au ............(A)

and let log_xa=vlogxa=v,

hence a=x^va=xv ............(B)

Putting value of aa from (B) in (A), we get

x=(x^v)^u=x^(vxxu)=x^(uxxv)x=(xv)u=xv×u=xu×v

or x^1=x^(uxxv)x1=xu×v

or uv=1uv=1

Now putting back values of uu and vv

log_ax xx log_xa=1logax×logxa=1