How do you prove sec^-1x+csc^-1x=pi/2sec1x+csc1x=π2?

2 Answers
Oct 20, 2016

Please see the explanation.

Explanation:

Prove:

sec^-1(x) + csc^-1(x) = pi/2sec1(x)+csc1(x)=π2

Use the identity csc^-1(x) = pi/2 - sec^-1(x)csc1(x)=π2sec1(x):

sec^-1(x) + pi/2 - sec^-1(x) = pi/2sec1(x)+π2sec1(x)=π2

pi/2 = pi/2π2=π2

Q.E.D.

Oct 20, 2016

use the fact that csc is the complementary function of sec.

Explanation:

let
sec^-1x=ysec1x=y

=>x=secyx=secy

=>x=csc(pi/2-y)x=csc(π2y)
=>csc^-1x=pi/2-ycsc1x=π2y

substituting back for y

csc^-1x=pi/2-sec^-1xcsc1x=π2sec1x

hence sec^-1x+csc^-1x=pi/2sec1x+csc1x=π2

as required.