How do you prove sec^2x-tan^2x =cos^2x+sin^2x sec2xtan2x=cos2x+sin2x?

1 Answer
May 18, 2018

See below

Explanation:

Using:
1+sec^2x=tan^2x1+sec2x=tan2x
1=sin^2x+cos^2x1=sin2x+cos2x

Start:
sec^2x-tan^2x =cos^2x+sin^2x sec2xtan2x=cos2x+sin2x

(1+tan^2x)-tan^2x=cos^2x+sin^2x (1+tan2x)tan2x=cos2x+sin2x

1+cancel(tan^2x)cancel(-tan^2x)=cos^2x+sin^2x

1=cos^2x+sin^2x

cos^2x+sin^2x=cos^2x+sin^2x