How do you prove (sec(theta))+(tan(theta))(1-sin(theta))=cos(theta)(sec(θ))+(tan(θ))(1sin(θ))=cos(θ)?

1 Answer
May 24, 2018

For a Proof, please refer to Explanation.

Explanation:

(sectheta+tantheta)(1-sintheta)(secθ+tanθ)(1sinθ),

=(1/costheta+sintheta/costheta)(1-sintheta)=(1cosθ+sinθcosθ)(1sinθ),

=((1+sintheta)/costheta)((1-sintheta)/1)=(1+sinθcosθ)(1sinθ1),

=(1-sin^2theta)/costheta=1sin2θcosθ,

=cos^2theta/costheta=cos2θcosθ,

=costheta=cosθ, as desired!