How do you prove sec(x) + 1 + ((1-tan^2(x)) / (sec(x)-1)) = cos(x)/(1-cos(x))?

2 Answers
Jul 10, 2016

Do some conjugate multiplication, make use of trig identities, and simplify. See below.

Explanation:

Recall the Pythagorean Identity sin^2x+cos^2x=1. Divide both sides by cos^2x:
(sin^2x+cos^2x)/cos^2x=1/cos^2x
->tan^2x+1=sec^2x
We will be making use of this important identity.

Let's focus on this expression:
secx+1

Note that this is equivalent to (secx+1)/1. Multiply the top and bottom by secx-1 (this technique is known as conjugate multiplication):
(secx+1)/1*(secx-1)/(secx-1)
->((secx+1)(secx-1))/(secx-1)
->(sec^2x-1)/(secx-1)

From tan^2x+1=sec^2x, we see that tan^2x=sec^2x-1. Therefore, we can replace the numerator with tan^2x:
(tan^2x)/(secx-1)

Our problem now reads:
(tan^2x)/(secx-1)+(1-tan^2x) / (secx-1) = cosx/(1-cosx)

We have a common denominator, so we can add the fractions on the left hand side:
(tan^2x)/(secx-1)+(1-tan^2x) / (secx-1) = cosx/(1-cosx)
->(tan^2x+1-tan^2x)/(secx-1)=cosx/(1-cosx)

The tangents cancel:
(cancel(tan^2x)+1-cancel(tan^2x))/(secx-1)=cosx/(1-cosx)

Leaving us with:
1/(secx-1)=cosx/(1-cosx)

Since secx=1/cosx, we can rewrite this as:
1/(1/cosx-1)=cosx/(1-cosx)

Adding fractions in the denominator, we see:
1/(1/cosx-1)=cosx/(1-cosx)
->1/(1/cosx-(cosx)/(cosx))=cosx/(1-cosx)

->1/((1-cosx)/cosx)=cosx/(1-cosx)

Using the property 1/(a/b)=b/a, we have:
cosx/(1-cosx)=cosx/(1-cosx)

And that completes the proof.

Jul 11, 2016

LHS=(secx+1)+(1-tan^2x)/(secx-1)

=((secx+1)(secx-1)+1-tan^2x)/(secx-1)

=(sec^2x-1+1-tan^2x)/(secx-1)

=cosx/cosx*((sec^2x-tan^2x))/((secx-1))

color(red)("putting",sec^2x-tan^2x=1)

=cosx/(cosxsecx-cosx)

color(red)("putting",cosxsecx=1)

=cosx/(1-cosx)=RHS