How do you prove sec x - cos x = sin x tan xsecx−cosx=sinxtanx?
1 Answer
Nov 13, 2015
See explanation...
Explanation:
sec(x) = 1/cos(x)sec(x)=1cos(x)
tan(x) = sin(x)/cos(x)tan(x)=sin(x)cos(x)
sin^2(x) + cos^2(x) = 1sin2(x)+cos2(x)=1
So:
sec(x) - cos(x)sec(x)−cos(x)
= 1/(cos(x)) - cos(x)=1cos(x)−cos(x)
=1/(cos(x)) - cos^2(x)/cos(x)=1cos(x)−cos2(x)cos(x)
=(1-cos^2(x))/cos(x)=1−cos2(x)cos(x)
=(sin^2(x))/cos(x)=sin2(x)cos(x)
=sin(x)sin(x)/cos(x)=sin(x)sin(x)cos(x)
=sin(x)tan(x)=sin(x)tan(x)