How do you prove (Sec x/Sin x)-(Sin x/Cos x)=Cot x? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Narad T. Jul 27, 2018 See the proof below Explanation: We need sin^2x+cos^2x=1 secx=1/cosx sin^2x+cos^2x=1 Therefore, LHS=(secx/sinx)-(sinx/cosx) =(1/(cosxsinx))-(sinx/cosx) =(1-sin^2x)/(cosxsinx) =cos^2x/(cosxsinx) =cosx/sinx =cotx =RHS QED Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 9444 views around the world You can reuse this answer Creative Commons License