How do you prove (secA - 1) / (sin^2A) = (sec^2A) / (1 + secA)?

2 Answers
Mar 15, 2018

To prove,we take
sec^2A-1=tan^2A,andtanA=sinA/cosA,1/cosA=secA

Explanation:

(secA-1)/sin^2A=sec^2A/(1+secA)
LHS=(secA-1)/sin^2A=((secA-1)(secA+1))/((sin^2A)(secA+1))
=(sec^2A-1)/((sin^2A)(secA+1))=tan^2A/(sin^2A(secA+1))=(sin^2A/cos^2A)/(sin^2A(secA+1))=(1/cos^2A)/(secA+1)=sec^2A/(1+secA)=RHS

Mar 17, 2018

Kindly refer to a Proof in the Explanation.

Explanation:

We have, sec^2A-1=tan^2A=sin^2A*1/cos^2A.

:. (secA+1)(secA-1)=sin^2A*sec^2A.

rArr (secA-1)/sin^2A=sec^2A/(1+secA, as desired!