How do you prove secx - cosx = tanx * sinx?

1 Answer
May 2, 2016

Using the definitions sec(x)=1/cos(x) and tan(x)=sin(x)/cos(x) along with the identity sin^2(x)+cos^2(x)=1 => sin^2(x)=1-cos^2(x),
for cos(x)!=0 we have

sec(x)-cos(x) = 1/cos(x)-cos^2(x)/cos(x)

=(1-cos^2(x))/cos(x)

=sin^2(x)/cos(x)

=sin(x)/cos(x)*sin(x)

=tan(x)*sin(x)