How do you prove secx(csc^2x)-csc^2x = secx / (1 + cosx)?

1 Answer
Apr 10, 2018

We have:

csc^2x(secx- 1) = secx/(1 + cosx)

1/sin^2x(1/cosx- 1) = (1/cosx)/(1+ cosx)

1/(sin^2xcosx) - 1/sin^2x = 1/(cosx(1 + cosx))

(1 - cosx)/(sin^2xcosx) = 1/(cosx(1 + cosx))

(1 -cosx)/((1- cos^2x)cosx) = 1/(cosx(1+ cosx))

(1 -cosx)/((1 + cosx)(1 - cosx)cosx) = 1/(cosx(1 + cosx))

1/(cosx(1 + cosx)) = 1/(cosx(1 + cosx))

As required.

Hopefully this helps!