How do you prove secx(csc^2x)-csc^2x = secx / (1 + cosx)?
1 Answer
Apr 10, 2018
We have:
csc^2x(secx- 1) = secx/(1 + cosx)
1/sin^2x(1/cosx- 1) = (1/cosx)/(1+ cosx)
1/(sin^2xcosx) - 1/sin^2x = 1/(cosx(1 + cosx))
(1 - cosx)/(sin^2xcosx) = 1/(cosx(1 + cosx))
(1 -cosx)/((1- cos^2x)cosx) = 1/(cosx(1+ cosx))
(1 -cosx)/((1 + cosx)(1 - cosx)cosx) = 1/(cosx(1 + cosx))
1/(cosx(1 + cosx)) = 1/(cosx(1 + cosx))
As required.
Hopefully this helps!