How do you prove sin2(x)cos2(x)=1cos(4x)8?

1 Answer
May 14, 2015

Let's start form the Left Hand Side(LHS):

LHS =sin2xcos2x=(22sinxcosx)2

Remember that, 2sinxcosx=sin2x

LHS =(12sin2x)2=14sin2(2x)

Use the half angle identity, cos2θ=12sin2θ

Replace θ by 2x cos4x=12sin2(2x)

Rearrange that ; sin2(2x)=12(1cos4x)

LHS=14(12(1cos4x))

=18(1cos4)x=1cos(4x)8= RHS

And that's it!