How do you prove Sin^2x-sin^2y=sin(x+y)sin(x-y)sin2xsin2y=sin(x+y)sin(xy)?

1 Answer
May 24, 2016

Please see below.

Explanation:

sin(x+y)sin(x-y)sin(x+y)sin(xy)

= (sinxcosy+cosxsiny)(sinxcosy-cosxsiny)(sinxcosy+cosxsiny)(sinxcosycosxsiny)

= sin^2xcos^2y-cos^2xsin^2ysin2xcos2ycos2xsin2y

= sin^2x(1-sin^2y)-(1-sin^2x)sin^2ysin2x(1sin2y)(1sin2x)sin2y

= sin^2x-sin^2xsin^2y-sin^2y+sin^2xsin^2ysin2xsin2xsin2ysin2y+sin2xsin2y

= sin^2x-cancel(sin^2xsin^2y)-sin^2y+cancel(sin^2xsin^2y)

= sin^2x-sin^2y