How do you prove #Sin^2x-sin^2y=sin(x+y)sin(x-y)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Shwetank Mauria May 24, 2016 Please see below. Explanation: #sin(x+y)sin(x-y)# = #(sinxcosy+cosxsiny)(sinxcosy-cosxsiny)# = #sin^2xcos^2y-cos^2xsin^2y# = #sin^2x(1-sin^2y)-(1-sin^2x)sin^2y# = #sin^2x-sin^2xsin^2y-sin^2y+sin^2xsin^2y# = #sin^2x-cancel(sin^2xsin^2y)-sin^2y+cancel(sin^2xsin^2y)# = #sin^2x-sin^2y# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 60649 views around the world You can reuse this answer Creative Commons License