How do you prove sin^4 X = (cos^2 2X - 2 cos 2x + 1) / 4?

1 Answer
Apr 30, 2016

Using the following:

  • a^2-2ab+b^2 = (a-b)^2
  • cos(2x) = cos^2(x)-sin^2(x)
  • 1 = cos^2(x)+sin^2(x)

we have:

(cos^2(2x)-2cos(2x)+1)/4 = (cos(2x)-1)^2/4

=((cos^2(x)-sin^2(x))-(cos^2(x)+sin^2(x)))^2/4

=(-2sin^2(x))^2/4

=(4sin^4(x))/4

=sin^4(x)