How do you prove [sin(x+ y) - sin(x-y)] /[ cos(x+ y) + cos(x-y)]= tan y?

1 Answer
Jun 26, 2016

see explanation

Explanation:

To color(blue)"Prove" we require to manipulate one side into the same form as the other side.This will involve using color(blue)"Addition formulae"

color(orange)"Reminders"

color(red)(|bar(ul(color(white)(a/a)color(black)(sin(A±B)=sinAcosB±cosAsinB)color(white)(a/a)|)))
color(red)(|bar(ul(color(white)(a/a)color(black)(cos(A±B)=cosAcosB∓sinAsinB)color(white)(a/a)|)))

Starting with the left side and simplifying numerator/denominator separately.

Numerator

sinxcosy+cosxsiny-[sinxcosy-cosxsiny)

=cancel(sinxcosy)+cosxsiny-cancel(sinxcosy)+cosxsiny

=2cosxsiny

Denominator

cosxcosy-sinxsiny+cosxcosy+sinxsiny

=cosxcosy-cancel(sinxsiny)+cosxcosy+cancel(sinxsiny)

=2cosxcosy
"---------------------------------------------------------------"

left side can now be expressed as

(2cosxsiny)/(2cosxcosy)=(cancel(2)cancel(cosx)siny)/(cancel(2)cancel(cosx)cosy)=(siny)/(cosy)

and (siny)/(cosy)=tany="right side hence proved"