How do you prove (sin2x + sin2y)/(cos2x + cos2y) = tan(x + y)?

1 Answer
Dec 17, 2015

With the sum identities

  • sin(x) + sin(y) = 2sin((x+y)/2)cos((x-y)/2)

  • cos(x) + cos(y) = 2cos((x+y)/2)cos((x-y)/2)

we have

(sin(2x) + sin(2y))/(cos(2x) + cos(2y)) = (2sin((2x+2y)/2)cos((2x - 2y)/2))/(2cos((2x+2y)/2)cos((2x - 2y)/2))

= sin(x+y)/cos(x+y)

= tan(x+y)


In the case that the sum identities above are not given, here is a short proof of them using the angle-addition formulas:

Let a = (x+y)/2 and b = (x-y)/2

Then

sin(x) + sin(y) = sin(a + b) + sin(a-b)

= sin(a)cos(b) + cos(a)sin(b) + sin(a)cos(b) - cos(a)sin(b)

= 2sin(a)cos(b)

= 2sin((x+y)/2)cos((x-y)/2)

And

cos(x) + cos(y) = cos(a+b) + cos(a-b)

= cos(a)cos(b) - sin(a)sin(b) + cos(a)cos(b) + sin(a)sin(b)

= 2cos(a)cos(b)

= 2cos((x+y)/2)sin((x-y)/2)