How do you prove sin4x = 4sinxcos^3x - 4sin^3xcosx? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer George C. May 28, 2015 I'll start from the double angle identities: cos 2theta = cos^2 theta - sin^2 theta sin 2theta = 2sin theta cos theta Then: sin 4x = 2sin 2x cos 2x =2(2 sin x cos x)(cos ^2x - sin^2 x) = 2(2sin x cos x cos^2 x - 2sinx cos x sin^2 x) =4sin x cos^3 x - 4 sin^3 x cos x Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 31151 views around the world You can reuse this answer Creative Commons License