How do you prove sin4x = 4sinxcos^3x - 4sin^3xcosx?

1 Answer
May 28, 2015

I'll start from the double angle identities:

cos 2theta = cos^2 theta - sin^2 theta

sin 2theta = 2sin theta cos theta

Then:

sin 4x = 2sin 2x cos 2x

=2(2 sin x cos x)(cos ^2x - sin^2 x)

= 2(2sin x cos x cos^2 x - 2sinx cos x sin^2 x)

=4sin x cos^3 x - 4 sin^3 x cos x