Let y=sinh^-1t then by definition
t=sinh y =(e^y-e^-y)/2
2t=e^y-e^-y
e^y-2t-e^-y=0
e^y-2t-1/e^y=0
e^(2y)-2te^y-1=0
Let x=e^y then we have
x^2-2tx-1=0--> Now use quadratic formula to solve
x=(2t+-sqrt(4t^2+4))/2
e^y = (2t+-sqrt(4t^2+4))/2
e^y = (2t+-sqrt(4(t^2+1)))/2
2e^y = 2t+-2sqrt(t^2+1)
e^y=t+-sqrt(t^2+1)
ln e^y = ln (t+-sqrt(t^2+1))
y=ln (t+sqrt(t^2+1))
sinh ^-1 t = ln (t+sqrt(t^2+1))
=Right side