How do you prove sinh^-1 (t) = ln(t+ sqrt(t^2 + 1))?

1 Answer
May 4, 2016

see below

Explanation:

Let y=sinh^-1t then by definition

t=sinh y =(e^y-e^-y)/2

2t=e^y-e^-y

e^y-2t-e^-y=0

e^y-2t-1/e^y=0

e^(2y)-2te^y-1=0

Let x=e^y then we have

x^2-2tx-1=0--> Now use quadratic formula to solve

x=(2t+-sqrt(4t^2+4))/2

e^y = (2t+-sqrt(4t^2+4))/2

e^y = (2t+-sqrt(4(t^2+1)))/2

2e^y = 2t+-2sqrt(t^2+1)

e^y=t+-sqrt(t^2+1)

ln e^y = ln (t+-sqrt(t^2+1))

y=ln (t+sqrt(t^2+1))

sinh ^-1 t = ln (t+sqrt(t^2+1))

=Right side