How do you prove sinx+cosx=(2sin^2x-1)/(sinx-cosx)? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Gió Apr 30, 2015 Try this: sinx+cosx=[2(1-cos^2x)-sin^2x-cos^2x]/(sinx-cosx) (sinx+cosx)(sinx-cosx)=2-2cos^2x-sin^2x-cos^2x sin^2x-cancel(cos^2x)=2-2cos^2x-sin^2x-cancel(cos^2x) 2sin^2x=2(1-cos^2x) 2sin^2x=2sin^2x Where I used the fact that: sin^2x+cos^2x=1 Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 7427 views around the world You can reuse this answer Creative Commons License