How do you prove sinx+cosx=(2sin^2x-1)/(sinx-cosx)?

1 Answer
Apr 30, 2015

Try this:
sinx+cosx=[2(1-cos^2x)-sin^2x-cos^2x]/(sinx-cosx)
(sinx+cosx)(sinx-cosx)=2-2cos^2x-sin^2x-cos^2x
sin^2x-cancel(cos^2x)=2-2cos^2x-sin^2x-cancel(cos^2x)
2sin^2x=2(1-cos^2x)
2sin^2x=2sin^2x

Where I used the fact that:
sin^2x+cos^2x=1