How do you prove (sinx+cosx)/(secx+cscx)=sinx/secxsinx+cosxsecx+cscx=sinxsecx?

1 Answer
Aug 25, 2016

See below.

Explanation:

Apply the following identities:

sectheta = 1/costhetasecθ=1cosθ

csctheta = 1/sinthetacscθ=1sinθ

Now, simplify both sides using the given identities:

(sinx + cosx)/(1/cosx + 1/sinx) = sinx/(1/cosx)sinx+cosx1cosx+1sinx=sinx1cosx

(sinx + cosx)/((sinx + cosx)/(sinxcosx)) = sinxcosxsinx+cosxsinx+cosxsinxcosx=sinxcosx

sinx + cosx xx (sinxcosx)/(sinx + cosx) = sinxcosxsinx+cosx×sinxcosxsinx+cosx=sinxcosx

cancel(sinx + cosx) xx (sinxcosx)/(cancel(sinx+cosx)) = sinxcosx

sinxcosx = sinxcosx

Identity proved!!

Hopefully this helps!