How do you prove (sinx + cosx)(tanx + cotx)=secx + cscx(sinx+cosx)(tanx+cotx)=secx+cscx?

2 Answers
May 28, 2018

color(green)[(sinx + cosx)(tanx + cotx)=secx-cosx+cosx+sinx+cscx-sinx=secx+cscx](sinx+cosx)(tanx+cotx)=secxcosx+cosx+sinx+cscxsinx=secx+cscx

Explanation:

show below:

color(blue)[(sinx + cosx)(tanx + cotx)=secx + cscx](sinx+cosx)(tanx+cotx)=secx+cscx

L.H.S=color(blue)[(sinx + cosx)(tanx + cotx)]=L.H.S=(sinx+cosx)(tanx+cotx)=

sinx*tanx+sinx*cotx+cosx*tanx+cosx*cotx=sinxtanx+sinxcotx+cosxtanx+cosxcotx=

sin^2x/cosx+cosx+sinx+cos^2x/sinx=sin2xcosx+cosx+sinx+cos2xsinx=

(1-cos^2x)/cosx+cosx+sinx+(1-sin^2x)/sinx=1cos2xcosx+cosx+sinx+1sin2xsinx=

1/cosx-cos^2x/cosx+cosx+sinx+1/sinx-sin^2x/sinx=1cosxcos2xcosx+cosx+sinx+1sinxsin2xsinx=

secx-cosx+cosx+sinx+cscx-sinx=color(blue)[secx+cscx]=R.H.Ssecxcosx+cosx+sinx+cscxsinx=secx+cscx=R.H.S

color(red)["Useful Trigonometric Identities"]Useful Trigonometric Identities

cos^2theta+sin^2theta=1cos2θ+sin2θ=1

1+tan^2theta=sec^2theta1+tan2θ=sec2θ

sin2theta=2sin theta cos thetasin2θ=2sinθcosθ

cos2theta=cos^2theta-sin^2theta=2cos^2theta-1=1-2sin^2thetacos2θ=cos2θsin2θ=2cos2θ1=12sin2θ

cos^2theta=1/2(1+cos2theta)cos2θ=12(1+cos2θ)

sin^2theta=1/2(1-cos2theta)sin2θ=12(1cos2θ)

tanx=sinx/cosxtanx=sinxcosx

cotx=cosx/sinxcotx=cosxsinx

1/cosx=secx1cosx=secx

1/sinx=cscx1sinx=cscx

May 28, 2018

Please see below.

Explanation:

We know that,

color(red)((1)tantheta=sintheta/costheta and cottheta=costheta/sintheta(1)tanθ=sinθcosθandcotθ=cosθsinθ

color(blue)((2)sin^2theta+cos^2theta=1(2)sin2θ+cos2θ=1

color(violet)((3)1/sintheta=csctheta and 1/costheta=sectheta(3)1sinθ=cscθand1cosθ=secθ

We have to prove,

(sinx+cosx)(tanx+cotx)=secx+cscx(sinx+cosx)(tanx+cotx)=secx+cscx

We take Left Hand Side :

LHS=(sinx+cosx)(tanx+cotx)...tocolor(red)(Apply(1)

LHS=(sinx+cosx)(sinx/cosx+cosx/sinx)

LHS=(sinx+cosx)((sin^2x+cos^2x)/(sinxcosx))

LHS=(sinx+cosx)(1/(sinxcosx))...tocolor(blue)(Apply(2)

LHS=sinx/(sinxcosx)+cosx/(sinxcosx)

LHS=1/cosx+1/sinx...tocolor(violet)(Apply(3)

LHS=secx+cscx

LHS=RHS