show below:
color(blue)[(sinx + cosx)(tanx + cotx)=secx + cscx](sinx+cosx)(tanx+cotx)=secx+cscx
L.H.S=color(blue)[(sinx + cosx)(tanx + cotx)]=L.H.S=(sinx+cosx)(tanx+cotx)=
sinx*tanx+sinx*cotx+cosx*tanx+cosx*cotx=sinx⋅tanx+sinx⋅cotx+cosx⋅tanx+cosx⋅cotx=
sin^2x/cosx+cosx+sinx+cos^2x/sinx=sin2xcosx+cosx+sinx+cos2xsinx=
(1-cos^2x)/cosx+cosx+sinx+(1-sin^2x)/sinx=1−cos2xcosx+cosx+sinx+1−sin2xsinx=
1/cosx-cos^2x/cosx+cosx+sinx+1/sinx-sin^2x/sinx=1cosx−cos2xcosx+cosx+sinx+1sinx−sin2xsinx=
secx-cosx+cosx+sinx+cscx-sinx=color(blue)[secx+cscx]=R.H.Ssecx−cosx+cosx+sinx+cscx−sinx=secx+cscx=R.H.S
color(red)["Useful Trigonometric Identities"]Useful Trigonometric Identities
cos^2theta+sin^2theta=1cos2θ+sin2θ=1
1+tan^2theta=sec^2theta1+tan2θ=sec2θ
sin2theta=2sin theta cos thetasin2θ=2sinθcosθ
cos2theta=cos^2theta-sin^2theta=2cos^2theta-1=1-2sin^2thetacos2θ=cos2θ−sin2θ=2cos2θ−1=1−2sin2θ
cos^2theta=1/2(1+cos2theta)cos2θ=12(1+cos2θ)
sin^2theta=1/2(1-cos2theta)sin2θ=12(1−cos2θ)
tanx=sinx/cosxtanx=sinxcosx
cotx=cosx/sinxcotx=cosxsinx
1/cosx=secx1cosx=secx
1/sinx=cscx1sinx=cscx