How do you prove (sinx+cosx)(Tanx+cotx)=secx+cscx?
1 Answer
Mar 22, 2018
We have:
(sinx + cosx)(sinx/cosx + cosx/sinx) = secx +cscx
(sinx + cosx)((sin^2x + cos^2x)/(sinxcosx)) = secx + cscx
(sinx +cosx)/(sinxcosx) = secx + cscx
sinx/(sinxcosx) + cosx/(sinxcosx) = secx + cscx
1/cosx + 1/sinx = secx + cscx
secx + cscx = secx + cscx
LHS = RHS
Hopefully this helps!