How do you prove (sinx+cosx)(Tanx+cotx)=secx+cscx?

1 Answer
Mar 22, 2018

We have:

(sinx + cosx)(sinx/cosx + cosx/sinx) = secx +cscx

(sinx + cosx)((sin^2x + cos^2x)/(sinxcosx)) = secx + cscx

(sinx +cosx)/(sinxcosx) = secx + cscx

sinx/(sinxcosx) + cosx/(sinxcosx) = secx + cscx

1/cosx + 1/sinx = secx + cscx

secx + cscx = secx + cscx

LHS = RHS

Hopefully this helps!