How do you prove (sinx/(cscx-1))+(sinx/(csc+1))=2tan^2x(sinxcscx1)+(sinxcsc+1)=2tan2x?

1 Answer
Mar 4, 2018

Given,

((sin x)/(cscx-1)) +((sinx)/(csc x+1))(sinxcscx1)+(sinxcscx+1)

=(sinx(cscx+1) + sinx(cscx-1))/((cscx+1)(cscx-1))=sinx(cscx+1)+sinx(cscx1)(cscx+1)(cscx1)

=(sinx(csc x+1 + cscx-1))/(csc^2 x -1)=sinx(cscx+1+cscx1)csc2x1

=(sinx 2 cscx)/(cot^2 x)=sinx2cscxcot2x (as, csc^2 x - cot^2 x=1csc2xcot2x=1)

=((2 sinx)/(sinx))/cot^2 x=2sinxsinxcot2x

=2/cot^2 x=2cot2x

=2 tan^2 x=2tan2x