Given,
((sin x)/(cscx-1)) +((sinx)/(csc x+1))(sinxcscx−1)+(sinxcscx+1)
=(sinx(cscx+1) + sinx(cscx-1))/((cscx+1)(cscx-1))=sinx(cscx+1)+sinx(cscx−1)(cscx+1)(cscx−1)
=(sinx(csc x+1 + cscx-1))/(csc^2 x -1)=sinx(cscx+1+cscx−1)csc2x−1
=(sinx 2 cscx)/(cot^2 x)=sinx2cscxcot2x (as, csc^2 x - cot^2 x=1csc2x−cot2x=1)
=((2 sinx)/(sinx))/cot^2 x=2sinxsinxcot2x
=2/cot^2 x=2cot2x
=2 tan^2 x=2tan2x