How do you prove sinx/cscx + cosx/secx = sinx cscx?

2 Answers

TRUE," " " "sin x/csc x+cos x/sec x=sin x csc x

Explanation:

Take note first that sin x csc x = 1

Why? because, sin x=1/csc x

multiplying both sides by csc x

sin x * csc x= 1/csc x*csc x

sin x*csc x=1/cancelcsc x*cancelcsc x

and

sin x csc x = 1

Take note also that

sec x cos x=1 because sec x=1/cos x

Let us go back to the problem

sin x/csc x+cos x/sec x=sin x csc x

sin x/csc x*sin x/sin x+cos x/sec x*cos x/cos x=sin x csc x

because sin x/sin x=1 and cos x/cos x=1

You can always multiply any quantity by 1 and will not change anything

sin x/csc x*sin x/sin x+cos x/sec x*cos x/cos x=sin x csc x

Next

sin^2 x/(csc x sin x)+cos^2 x/(sec x cos x)=sin x csc x

sin^2 x/1+cos^2 x/1=sin x csc x

sin^2 x+cos^2 x=sin x csc x

Also from Pythagorean Relation,

sin^2 x+cos^2 x=1

therefore

sin^2 x+cos^2 x=sin x csc x

becomes

1=sin x csc x

sin x csc x=sin x csc x TRUE !!!

God bless America ...

Another way is

sin x/csc x+cos x/sec x=sin x csc x

Starting from left, factor out sin x

sin x(1/csc x+cos x/(sin x sec x))=sin x csc x

sin x(1/csc x+cos x/sin x*1/sec x)=sin x csc x

From reciprocal relations: 1/csc x=sin x and 1/sec x=cos x
it follows

sin x(sin x+cos x/sin x*cos x)=sin x csc x

and then

sin x(sin x+cos^2 x/sin x)=sin x csc x

Simplify by using sin x as Least Common Denominator

sin x(sin^2 x/sin x+cos^2 x/sin x)=sin x csc x

sin x((sin^2 x+cos^2 x)/sin x)=sin x csc x

sin x(1/sin x)=sin x csc x

sin x csc x=sin x csc x

Proven !!