How do you prove tan^-1(1/4)+tan^-1(2/9)=tan^-1(1/2)? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Nov 6, 2016 LHS=tan^-1(1/4)+tan^-1(2/9) =tan^-1((1/4+2/9)/(1-1/4xx2/9)) =tan^-1(((9*1+4*2)/36)/((36-2)/36)) =tan^-1((17/36)/((34)/36)) =tan^-1(cancel17/cancel36xxcancel36/cancel34^2) =tan^-1(1/2)=RHS Proved Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 4625 views around the world You can reuse this answer Creative Commons License