How do you prove Tan^2(x/2+Pi/4)=(1+sinx)/(1-sinx)?

1 Answer
Apr 23, 2016

Proof below (it's a long one)

Explanation:

Ill work this backwards (but writing doing it forward would work as well):
(1+sinx)/(1-sinx)=(1+sinx)/(1-sinx)*(1+sinx)/(1+sinx)
=(1+sinx)^2/(1-sin^2x)
=(1+sinx)^2/cos^2x
=((1+sinx)/cosx)^2
Then substitute in t formula (Explanation below)
=((1+(2t)/(1+t^2))/((1-t^2)/(1+t^2)))^2
=(((1+t^2+2t)/(1+t^2))/((1-t^2)/(1+t^2)))^2
=((1+t^2+2t)/(1-t^2))^2
=((1+2t+t^2)/(1-t^2))^2
=((1+t)^2/(1-t^2))^2
=((1+t)^2/((1-t)(1+t)))^2
=((1+t)/(1-t))^2
=((1+tan(x/2))/(1-tan(x/2)))^2
=((tan(pi/4)+tan(x/2))/(1-tan(x/2)tan(pi/4)))^2 Note that: (tan(pi/4)=1)
=(tan(x/2+pi/4))^2
=tan^2(x/2+pi/4)

T FORMULAE FOR THIS EQUATION:
sinx=(2t)/(1-t^2), cosx=(1-t^2)/(1+t^2), where t=tan(x/2)