How do you prove tan(2A)1+sec(2A)=tan(A)?

2 Answers
Jul 6, 2015

My proof is done from RHS to LHS.

Explanation:

tanA=sinAcosA

multiply and divide by 2cosA

tanA=2sinAcosA2cos2A

tanA=sin2Acos2A+cos2A

tanA=sin2A1sin2A+cos2A

tanA=sin2A1+cos2A

Divide numerator and denominator with cos2A

tanA=(sin2A)/cos2A(1+cos2A)/cos2A

tanA=tan2A1+sec2A

Hence proved

Jul 6, 2015

Prove trig identity

Explanation:

tan2a1+(1cos(2a))= (sin2acos2a).(cos2acos2a+1)

= sin2acos2a+1 = 2sinacosa2cos2a=

=sinacosa=tana