How do you prove tan(2A)/(1+sec(2A))=tan(A)?

2 Answers
Jul 6, 2015

My proof is done from RHS to LHS.

Explanation:

tanA=sinA/cosA

multiply and divide by 2cosA

tanA=(2sinAcosA)/(2cos^2A)

tanA=(Sin2A)/(cos^2A+cos^2A)

tanA=(sin2A)/(1-sin^2A+cos^2A)

tanA=(sin2A)/(1+cos2A)

Divide numerator and denominator with cos2A

tanA=((sin2A)//cos2A)/((1+cos2A)//cos2A

tanA=(tan2A)/(1+sec2A)

Hence proved

Jul 6, 2015

Prove trig identity

Explanation:

(tan 2a)/(1 + (1/cos (2a)) = ((sin 2a)/(cos 2a)).((cos 2a)/(cos 2a + 1))

= (sin 2a)/(cos 2a + 1) = (2sin acos a)/(2cos^2 a) =

= sin a/cos a = tan a