How do you prove #tan(2theta)=2/(cottheta-tantheta)#?

1 Answer
Oct 7, 2016

see below

Explanation:

#tan 2 theta = 2/(cot theta-tan theta)#

Right Side :#=2/(cot theta-tan theta)#

#=2/(costheta/sin theta - sin theta/cos theta)#

#=2/((cos^2theta-sin^2theta)/(sin theta cos theta)#

#=2 * (sin theta cos theta)/(cos^2theta-sin^2theta)#

#=(2 sin theta cos theta)/(cos^2theta-sin^2theta)#

#=sin(2theta)/cos(2theta)#

#=tan ( 2 theta)#

#:. = # Left Side